ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid

  • .
  • Published: 2020-10-16
  • 651

Rice tillering is an important agronomic trait affecting grain yield. Here we identified a high-tillering mutant tillering20 (t20), which could be restored to wild type by treatment with the strigolactone (SL) analogue rac-GR24. T20 encodes chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering.

Research team led by Prof. LI Jiayang at Institute of Genetics and Developmental Biology of Chinese Academy of Sciences discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-β-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.

This work was published in Molecular Plant. Graduated PhD student LIU Xue, PhD student HU Qingliang at University of Chinese Academy of Sciences and Dr. YAN Jijun at Institute of Genetics and Developmental Biology contributed equally to this work.